PROJECT:

Synthesis of grafted and cross-linked polymer electrode membranes using radiation techniques for application in hydrogen fuel cells

Host organization: Ho Chi Minh city University of Science, VNU

Project manager: Assoc. Prof. PhD. Chan Duy Tap

CODE

VINIF.2020.DA08

PROJECT SUMMARY

"Research on the synthesis of polymer electrode membranes (PEM) by combining grafting and cross-linking methods using nuclear radiation and applying a combination of structural analysis methods using nuclear and atomic spectra, and molecular and mechanical and electrochemical property analysis to study the structure-property relationship of proton exchange membranes for practical use in hydrogen fuel cells.

- Research on ETFE-PEM using cross-linking technique by radiation (first time) and then modifying the cross-linked ETFE-PEM using radiation technique (second time) to improve structural, mechanical and electrochemistry properties of cells.
- Modification of commercial Nafion membrane by irradiation technique and lacksquarecomparison with the ETFE-PEMs"

HIGHLIGHTS OF THE PROJECT

- Published 03 articles in international journals of Q1 rank.
- Published 02 articles in domestic journals (on the scoring list of Academic Councils).
- Completed master's degree program: 03.
- Currently supporting the training of 02 graduate students.

RESEARCH ARTICLE

Positron annihilation lifetime study of subnano level free volume features of grafted polymer electrolyte membranes for hydrogen fuel cell applications

Tran Duy Tap 🔀, Tran Hoang Long, Dinh Tran Trong Hieu, Lam Hoang Hao, Huynh Truc Phuong, Le Quang Luan, Tran Van Man

ARTICLE

Morphological characterization of grafted polymer electrolyte membranes at a surface layer for fuel cell application

Lam Hoang Hao, Tran Duy Tap 🔀, Dinh Tran Trong Hieu, Ekaterina Korneeva, Nguyen Van Tiep, Kimio Yoshimura, Shin Hasegawa, Shin-ichi Sawada, Tran Van Man, Nguyen Quang Hung, Luu Anh Tuyen, Van-Phuc Dinh, Le Quang Luan, Yasunari Maekawa ... See fewer authors A

First published: 11 June 2022 | https://doi.org/10.1002/pat.5761 | Citations: 2

Funding information: Vingroup Big Data Institute (VINBIGDATA), Grant/Award Number: VINIF.2020.DA08

DOI: 10.31276/VJSTE.64(2).03-09

PHYSICAL SCIENCES | PHYSICS

3

Investigation of the water states of poly(styrene sulfonic acid) grafted poly(ethylene-co-tetrafluoroethylene) copolymer using FT-IR analysis

Tran Trong Hieu Dinh¹, Hoang Hao Lam², Thanh Danh Tran², Quang Luan Le³, Van Man Tran², Truc Phuong Huynh², Van Phuc Dinh⁴, Anh Tuyen Luu⁵, Kim Ngoc Pham², Duy Tap Tran^{2*}

> ¹Physics Laboratory, Le Thanh Ton High School, Ho Chi Minh city ²University of Science, Vietnam National University, Ho Chi Minh city ³Biotechnology Center of Ho Chi Minh city ⁴Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh city 5 Center for Nuclear Technologies, Vietnam Atomic Energy Institute, Ho Chi Minh city

> > Received 19 April 2021; accepted 24 June 2021

First published: 17 November 2021 | https://doi.org/10.1002/app.51901 | Citations: 4

Funding information: Vingroup Innovation Foundation (VINIF), Grant/Award Number: VINIF.2020.DA08; Vingroup; Vingroup Big Data Institude (VINBIGDATA)

Science & Technology Development Journal, 24(3):2100-2109

Open Access Full Text Article

Research Article

Surface features of polymer electrolyte membranes for fuel cell applications: An approach using S2p XPS analysis

Lam Hoang Hao^{1,2}, Dinh Tran Trong Hieu^{1,2,3}, Tran Thanh Danh^{1,2}, Tran Hoang Long^{1,2}, Huynh Truc Phuong^{2,4}, Le Quang Luan⁵, Tran Van Man^{2,6}, Luu Anh Tuyen⁷, Pham Kim Ngoc^{1,2}, Tran Duy Tap^{1,2,*}

Cite this article : Hao L H, Hieu D T T, Danh T T, Long T H, Phuong H T, Luan L Q, Man T V, Tuyen L A, Ngoc P K, Tap T D. Surface features of polymer electrolyte membranes for fuel cell applications: An approach using S2p XPS analysis. Sci. Tech. Dev. J.; 24(3):2100-2109.

IMAGES OF THE PROJECT

Neutron irradiation system

Sample preparation at the Lab

Lab's member defend master's thesis

CONTACT INFORMATION

